Home
    • Login
    View Item 
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas A&M University at College Station
    • View Item
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas A&M University at College Station
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    PROBABILISTIC PREDICTION USING EMBEDDED RANDOM PROJECTIONS OF HIGH DIMENSIONAL DATA

    Thumbnail
    Date
    2011-08-08
    Author
    Kurwitz, Richard C.
    Metadata
    Show full item record
    Abstract
    The explosive growth of digital data collection and processing demands a new approach to the historical engineering methods of data correlation and model creation. A new prediction methodology based on high dimensional data has been developed. Since most high dimensional data resides on a low dimensional manifold, the new prediction methodology is one of dimensional reduction with embedding into a diffusion space that allows optimal distribution along the manifold. The resulting data manifold space is then used to produce a probability density function which uses spatial weighting to influence predictions i.e. data nearer the query have greater importance than data further away. The methodology also allows data of differing phenomenology e.g. color, shape, temperature, etc to be handled by regression or clustering classification. The new methodology is first developed, validated, then applied to common engineering situations, such as critical heat flux prediction and shuttle pitch angle determination. A number of illustrative examples are given with a significant focus placed on the objective identification of two-phase flow regimes. It is shown that the new methodology is robust through accurate predictions with even a small number of data points in the diffusion space as well as flexible in the ability to handle a wide range of engineering problems.
    URI
    http://hdl.handle.net/1969.1/ETD-TAMU-2009-05-519
    Collections
    • Texas A&M University at College Station

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV