PROPERTIES OF THE TOMBUSVIRUS MOVEMENT PROTEIN AND RNAi SUPPRESSOR THAT INFLUENCE PATHOGENESIS

Date

2010-01-16

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Tomato bushy stunt virus (TBSV) provides a good model system to investigate molecular virus-host interactions in plants. P22 and P19 proteins encoded by TBSV contribute to multiple invasion-associated functions. Green fluorescence-mediated visualization of TBSV invasion in this study suggests that virus exit from inoculated epidermal cells is a crucial event. Close examination of one P22 mutant showed that it had lost the capacity to move between epidermis and mesophyll which was possibly due to an altered subcellular localization. P19 is a potent suppressor of RNA interference (RNAi) in various systems by forming dimers that bind 21-nucleotide (nt) duplex siRNAs (short interfering RNAs), to affect the programming of the RNA-induced silencing complex (RISC). P19 is attractive for biotechnological and research purposes to prevent RNAi of certain value-added genes in plants. To obtain a good plant-based expression platform, a suppression-active mutant P19 was expressed in transgenic N. benthamiana lines. This is the first example of P19 accumulating to detectable levels in a transgenic plant and initial results suggest it is actively suppressing RNAi. Furthermore, to investigate the correlation between siRNA binding of P19 and its various biological roles, predicted siRNA-interacting sites of TBSV P19 were modified, and the corresponding TBSV mutants were used to inoculate plants. Substitutions on siRNA-contact sites on the central domain of P19 resulted in more severe symptoms in N. benthamiana compared to those affecting peripheral regions. All tested combinations of siRNA-binding mutations were associated with reduced accumulation of total TBSV-derived siRNAs, and loss of siRNA sequestration by P19. Additionally, some modifications were found to cause RNAi-mediated disappearance of viral and host materials in N. benthamiana but not in spinach. In conclusion, exit out of epidermal cells is a key host range determinant for TBSV and particular amino acids on P22 may influence this by regulating the proper subcellular localization. Mutant P19 transgenic plants were successfully established with minor physiological effects to be applied as a platform to study RNAi and to over-express proteins. Finally, a compromised P19-siRNA binding impacts symptom development, systemic invasion, integrity of virus plus host RNA and proteins, and that all in a hostdependent manner.

Description

Citation