Home
    • Login
    View Item 
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas A&M University at College Station
    • View Item
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas A&M University at College Station
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Phase control in the synthesis of yttrium oxide nano and micro-particles by flame spray pyrolysis

    Thumbnail
    Date
    2009-05-15
    Author
    Mukundan, Mallika
    Metadata
    Show full item record
    Abstract
    The project synthesizes phase pure Yttria particles using flame spray pyrolysis, and to experimentally determines the effect of various process parameters like residence time, adiabatic flame temperature and precursor droplet size on the phase of Yttria particles generated. Further, through experimentation and based on the understanding of the process, conditions that produce pure monoclinic Y2O3 particles were found. An ultrasonic atomization set-up was used to introduce precursor droplets (aqueous solution of yttrium nitrate hex hydrate) into the flame. A hydrogen-oxygen diffusion flame was used to realize the high temperature aerosol synthesis. The particles were collected on filters and analyzed using X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). Individual process parameters (flame temperature, residence time, precursor concentration, precursor droplet size) were varied in continuous trials, keeping the rest of the parameters constant. The effect of the varied parameter on the phase of the product Yttria particles was then analyzed. Pre-flame heating was undertaken using a nozzle heater at variable power. Precursor solution concentrations of 0.026 mol/L, 0.26 mol/L, and 0.65 mol/L were used. Residence time was varied by means of burner diameter (9.5 mm and 1.6 mm ID). Large precursor droplets were removed by means of an inertial impactor. The higher flame temperatures and precursor heating favor the formation of monoclinic yttrium oxide. The fraction of the cubic phase is closely related to the particle diameter. All particles larger than a critical size were of the cubic phase. Phase pure monoclinic yttrium oxide particles were successfully synthesized. The end conditions included a precursor concentration of 0.65 mol/L, a pure hydrogen-oxygen flame and a 1.6 mm burner. The precursor droplets entrained fuel gas was passed through a round jet impactor and preheated at full power (130 VA). The particles synthesized were in the size range of 0.350 to 1.7 ?m.
    URI
    http://hdl.handle.net/1969.1/ETD-TAMU-1568
    Collections
    • Texas A&M University at College Station

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV