Design and testing of piezoelectric sensors

Date

2009-05-15

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Piezoelectric materials have been widely used in applications such as transducers, acoustic components, as well as motion and pressure sensors. Because of the material?s biocompatibility and flexibility, its applications in biomedical and biological systems have been of great scientific and engineering interest. In order to develop piezoelectric sensors that are small and functional, understanding of the material behavior is crucial. The major objective of this research is to develop a test system to evaluate the performance of a sensor made from polyvinylidene fluoride and its uses for studying insect locomotion and behaviors. A linear stage laboratory setup was designed and built to study the piezoelectric properties of a sensor during buckling deformation. The resulting signal was compared with the data obtained from sensors attached a cockroach, Blaberus discoidalis. Comparisons show that the buckling generated in laboratory settings can be used to mimic sensor deformations when attached to an insect. An analytical model was also developed to further analyze the test results. Initial analysis shows its potential usefulness in predicting the sensor charge output. Additional material surface characterization studies revealed relationships between microstructure properties and the piezoelectric response. This project shows feasibility of studying insects with the use of polyvinylidene fluoride sensors. The application of engineering materials to insect studies opens the door to innovative approaches to integrating biological, mechanical and electrical systems.

Description

Citation