Modeling of the optical properties of nonspherical particles in the atmosphere

Date

2009-05-15

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

The single scattering properties of atmospheric particles are fundamental to radiative simulations and remote sensing applications. In this study, an efficient technique, namely, the pseudo-spectral time-domain (PSTD) method which was first developed to study acoustic wave propagation, is applied to the scattering of light by nonspherical particles with small and moderate size. Five different methods are used to discretize Maxwell?s equations in the time domain. The perfectly matched layer (PML) absorbing boundary condition is employed in the present simulation for eliminating spurious wave propagations caused by the spectral method. A 3-D PSTD code has been developed on the basis of the five aforementioned discretization methods. These methods provide essentially the same solutions in both absorptive and nonabsorptive cases. In this study, the applicability of the PSTD method is investigated in comparison with the Mie theory and the T-matrix method. The effects of size parameter and refractive index on simulation accuracy are discussed. It is shown that the PSTD method is quite accurate when it is applied to the scattering of light by spherical and nonspherical particles, if the spatial resolution is properly selected. Accurate solutions can also be obtained from the PSTD method for size parameter of 80 or refractive index of 2.0+j0. Six ice crystal habits are defined for the PSTD computational code. The PSTD results are compared with the results acquired from the finite difference time domain (FDTD) method at size parameter 20. The PSTD method is about 8-10 times more efficient than the conventional FDTD method with similar accuracy. In this study, the PSTD is also applied to the computation of the phase functions of ice crystals with a size parameter of 50. Furthermore, the PSTD, the FDTD, and T-matrix methods are applied to the study of the optical properties of horizontally oriented ice crystals. Three numerical schemes for averaging horizontal orientations are developed in this study. The feasibility of using equivalent circular cylinders as surrogates of hexagonal prisms is discussed. The horizontally oriented hexagonal plates and the equivalent circular cylinders have similar optical properties when the size parameter is in the region about from 10 to 40. Otherwise, the results of the two geometries are substantially different.

Description

Citation