Evaluation of physiological and pheromonal factors regulating honey bee, apis mellifera l. (hymenoptera: apidae) foraging and colony growth

Date

2009-05-15

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

This dissertation examines some important physiological and pheromonal factors regulating foraging and colony growth in honey bee colonies. The first study analyzed effects of soybean trypsin inhibitor (SBTI) on the development of hypopharyngeal gland, midgut enzyme activity and survival of the honey bee. In this study newly emerged caged bees were fed pollen diets containing three different concentrations of SBTI. Bees fed 1% SBTI had significantly reduced hypopharyngeal gland protein content. This study indicated that nurse bees fed a pollen diet containing at least 1% SBTI would be poor producers of larval food. In the second study nurse bee biosynthesis of brood food was manipulated using SBTI, and the resulting effects on pollen foraging were measured. Experimental colonies were given equal amounts of SBTI treated and untreated pollen. SBTI treatments had significantly lower hypopharyngeal gland protein content than controls. There was no significant difference in the ratio of pollen to non-pollen foragers and pollen load weights collected between the treatments. These results supported the pollen foraging effort predictions generated from the direct independent effects hypothesis. In the third study we tested whether brood pheromone (BP) regulated queen egg laying via modulation of worker-queen interactions and nurse bee rearing behaviors. This experiment had BP and control treatments. Queens in the BP treatment laid greater number of eggs, were fed for a greater amount of time and were less idle. Significantly more time was spent in cell cleaning by the bees in BP treatments. The results suggest that brood pheromone regulated queen egg-laying rate by modulating worker-queen interactions and nurse bee rearing behavior. The final study of this dissertation focused on how dose-dependent BP-mediated division of labor affected the partitioning of non-foraging and foraging work forces and the amount of brood reared. Triple cohort colonies were used and there were three treatments, Low BP, High BP and Control. Low BP treatments had significantly higher ratio of pollen to non-pollen foragers and greater pollen load weights. Low BP treatment bees foraged at a significantly younger age. This study has shown that BP elicits dose-dependent modulation of foraging and brood rearing behaviors.

Description

Citation