Inhibition of breast and prostate cancer cell growth by 3,3'-diindolylmethane and related compounds

Date

2009-05-15

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Selective receptor modulators have been developed for steroid hormone receptors as a new class of mechanism-based drugs for treatment of hormone related diseases. We investigated an alternative mechanism-based strategy for treating various cancers with selective aryl hydrocarbon receptor modulators (SAhRMs), such as diindolylmetane/(DIM), 2,3,7,8-tetrachlorodibenzo-pdioxin/( TCDD), and 6-6-methyl-1,3,8-trichlorodibenzofuran/(MCDF) that exhibit antiproliferative activity in several cancer cell lines. MDA-MB-453 and BT-474 are estrogen receptor/(ER) negative breast cancer cell lines that express a functional aryl hydrocarbon receptor/(AhR) and treatment with SAhRMs significantly inhibited MDA-MB-453/BT-474 cell proliferation but did not significantly affect the percent distribution of cells in G0/G1/S/G2/M phases of cell cycle. TCDD and the SAhRMs had minimal effects on the expression of various cellular kinases. These data coupled with results obtained for other activated kinase pathways demonstrate that TCDD and SAhRMs uniquely inhibit growth of ER-negative MDA-MB 453/BT-474 breast cancer cells through kinase independent pathways. However, the SAhRMs induced HES-1, an antiproliferative transcription factor, in both cell lines and this might represent a possible mechanism for the growth inhibitory effects observed with these compounds. We proved that ring substituted DIMs exhibit androgenic/antiandrogenic activities in androgen receptor/(AR)-positive LNCaP/22RV1 prostate cancer cell lines resulting in antiproliferative activities. These antiproliferative activities were accompanied by antiandrogenic activity and structure-dependent down regulation of AR. The ring-substituted DIMs also induced both non-steroidal anti-inflamatory drug-induced gene-1/(NAG-1) and activating transcription factor 3/(ATF-3), two anti-proliferative/apoptotic genes which are responsible in part for the inhibitory effects of these compounds on the proliferation of prostate cancer cells.

Description

Citation