Home
    • Login
    View Item 
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas A&M University at College Station
    • View Item
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas A&M University at College Station
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A revised Latest Cretaceous and Early Cenozoic apparent polar wander path for the Pacific plate

    Thumbnail
    Date
    2007-09-17
    Author
    Beaman, Melissa A.
    Metadata
    Show full item record
    Abstract
    The apparent polar wander path (APWP) for the Pacific plate during the Late Cretaceous and Early Cenozoic has been constrained primarily by seamount magnetic anomaly inversions and seafloor magnetic anomaly skewness. The reliability of these data types is uncertain and data are too sparse to provide a consistent or detailed APWP. In an effort to refine the Pacific APWP, we collected a larger, more diverse data set that allowed for the calculation of new mean paleomagnetic poles for the latest Cretaceous and Paleogene. We combined four types of data including sediment core paleocolatitudes, basalt core paleocolatitudes, seamount magnetic anomaly inversion declinations, and effective inclinations from magnetic anomaly skewness calculations. This diverse data set yields paleomagnetic poles that are less affected by bias from any particular data type. We found reasonably good agreement between data types and calculated five mean paleomagnetic poles representing the Oligocene (30 Ma), Late (39 Ma) and Early (49 Ma) Eocene, and Paleocene (61 Ma) epochs and the Maastrichtian (68 Ma) stage. Though a significant percentage of the data are from azimuthallyunoriented cores, which do not provide constraint on paleodeclination, a wide distribution of sites and the use of declination data from seamount anomaly inversions gave relatively good control on pole paleolongitude. The large numbers of data in our calculations allow for reasonably compact uncertainty bounds and the overall agreement among most data implies insignificant systematic errors in the data set. The greatest disagreement among data occurs due to a divergence between poles from anomaly skewness and other data types prior to 55 Ma. As a whole, the new APWP implies northward Pacific plate drift. However, this motion is punctuated with a stillstand from the Late Cretaceous (~80 Ma) until the middle Eocene, (~49 Ma). This stillstand suggests a lack of northward Pacific plate motion during this time, counter to most accepted models. This APWP is consistent with paleomagnetic results from the Emperor Chain that indicate the Hawaiian hotspot moved south during formation of the Emperor Chain, but it implies an amount of motion slightly greater than that previously proposed for hotspot drift.
    URI
    http://hdl.handle.net/1969.1/5893
    Collections
    • Texas A&M University at College Station

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV