Infinite dimensional discrimination and classification

Date

2007-09-17

Journal Title

Journal ISSN

Volume Title

Publisher

Texas A&M University

Abstract

Modern data collection methods are now frequently returning observations that should be viewed as the result of digitized recording or sampling from stochastic processes rather than vectors of finite length. In spite of great demands, only a few classification methodologies for such data have been suggested and supporting theory is quite limited. The focus of this dissertation is on discrimination and classification in this infinite dimensional setting. The methodology and theory we develop are based on the abstract canonical correlation concept of Eubank and Hsing (2005), and motivated by the fact that Fisher's discriminant analysis method is intimately tied to canonical correlation analysis. Specifically, we have developed a theoretical framework for discrimination and classification of sample paths from stochastic processes through use of the Loeve-Parzen isomorphism that connects a second order process to the reproducing kernel Hilbert space generated by its covariance kernel. This approach provides a seamless transition between the finite and infinite dimensional settings and lends itself well to computation via smoothing and regularization. In addition, we have developed a new computational procedure and illustrated it with simulated data and Canadian weather data.

Description

Citation