Assessment of the effectiveness of the advanced programmatic risk analysis and management model (apram) as a decision support tool for construction projects

Date

2007-09-17

Journal Title

Journal ISSN

Volume Title

Publisher

Texas A&M University

Abstract

Construction projects are complicated and fraught with so many risks that many projects are unable to meet pre-defined project objectives. Managers of construction projects require decision support tools that can be used to identify, analyze and implement measures that can mitigate the effects of project risks. Several risk analysis techniques have been developed over the years to enable construction project managers to make useful decisions that can improve the chances of project success. These risk analysis techniques however fail to simultaneously address risks relating to cost, schedule and quality. Also, construction projects may have scarce resources and construction managers still bear the responsibility of ensuring that project goals are met. Certain projects require trade-offs between technical and managerial risks and managers need tools that can help them do this. This thesis evaluates the usefulness of the Advanced Programmatic Risk Analysis and Management Model (APRAM) as a decision support tool for managing construction projects. The development of a visitor center in Midland, Texas was used as a case study for this research. The case study involved the implementation of APRAM during the concept phase of project development to determine the best construction system that can minimize the expected cost of failure. A risk analysis performed using a more standard approach yielded an expected cost of failure that is almost eight times the expected cost of failure yielded by APRAM. This study concludes that APRAM is a risk analysis technique that can minimize the expected costs of failure by integrating project risks of time, budget and quality through the allocation of resources. APRAM can also be useful for making construction management decisions. All identified component or material configurations for each alternative system however, should be analyzed instead of analyzing only the lowest cost alternative for each system as proposed by the original APRAM model. In addition, it is not possible to use decision trees to determine the optimal allocation of management reserves that would mitigate managerial problems during construction projects. Furthermore, APRAM does not address the issue of safety during construction and assumes all identifiable risks can be handled with money.

Description

Citation