Experimental studies of steam and steam-propane injection using a novel smart horizontal producer to enhance oil production in the San Ardo field

Date

2007-09-17

Journal Title

Journal ISSN

Volume Title

Publisher

Texas A&M University

Abstract

A 16????16????5.6 in. scaled, three-dimensional, physical model of a quarter of a 9-spot pattern was constructed to study the application of two processes designed to improve the efficiency of steam injection. The first process to be tested is the use of propane as a steam additive with the purpose of increasing recovery and accelerating oil production. The second process involves the use of a novel production configuration that makes use of a vertical injector and a smart horizontal producer in an attempt to mitigate the effects of steam override. The experimental model was scaled using the conditions in the San Ardo field in California and crude oil from the same field was used for the tests. Superheated steam at 190 ?????? 200????C was injected at 48 cm3/min (cold water equivalent) while maintaining the flowing pressures in the production wells at 50 psig. Liquid samples from each producer in the model were collected and treated to break emulsion and analyzed to determine water and oil volumes. Two different production configurations were tested: (1) a vertical well system with a vertical injector and three vertical producers and (2) a vertical injector-smart horizontal well system that consisted of a vertical injector and a smart horizontal producer divided into three sections. Runs were conducted using pure steam injection and steam-propane injection in the two well configurations. Experimental results indicated the following. First, for the vertical configuration, the addition of propane accelerated oil production by 53% and increased ultimate recovery by an additional 7% of the original oil in place when compared to pure steam injection. Second, the implementation of the smart horizontal system increased ultimate oil recovery when compared to the recovery obtained by employing the conventional vertical well system (49% versus 42% of the OOIP).

Description

Citation