Home
    • Login
    View Item 
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas A&M University at College Station
    • View Item
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas A&M University at College Station
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Studies of block copolypeptide synthesis, self-assembly, and structure-directing ability

    Thumbnail
    Date
    2007-04-25
    Author
    Jan, Jeng-Shiung
    Metadata
    Show full item record
    Abstract
    The use of organic compounds as templates to assemble inorganic materials with structures over multiple length scales has received much attention due to the potential applications that can be developed from these materials. Many organisms synthesize organic/inorganic composites with exceptional control over morphology, physical properties, and nanoscale organization of these materials. Materials such as bone, nacre, and silica diatoms are excellent examples of the complex yet highly controllable hierarchically structured materials nature can form at ambient conditions. The ability to mimic these organisms through the design of supramolecular assemblies and use them to direct the growth of hierarchically structured materials has increased significantly in recent years. In this dissertation, block copolypeptide templated inorganic materials were synthesized and characterized using a wide range of analytical techniques. There are three major conclusions from this dissertation. First, the conformation of a polypeptide chain can be used to manipulate the porosity of oxide materials obtained. Second, individual supramolecular objects (vesicles) formed by block copolypeptides can be used as templates to form nanostructured hard materials. Third, polypeptide chemistry and solution conditions can be used to control both the morphology and porosity of the hard materials they assemble. This dissertation also describes preliminary work toward designing the block copolypeptides derivatives for biomimetic inorganic synthesis and gene delivery. This work includes the synthesis of these block copolypeptides derivatives and of the templated oxide materials. Some interesting silica materials such as porous silicas and silica nanocapsules were synthesized using double hydrophilic block copolypeptides derivatives as templates. Also, the preliminary work of using these block copolypeptides derivatives for gene delivery is included and shows these copolypeptide derivatives are potential delivery vehicles.
    URI
    http://hdl.handle.net/1969.1/4939
    Collections
    • Texas A&M University at College Station

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV