Home
    • Login
    View Item 
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas A&M University at College Station
    • View Item
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas A&M University at College Station
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Development of a high power density motor for aircraft propulsion

    Thumbnail
    Date
    2007-04-25
    Author
    Dibua, Imoukhuede Tim Odion
    Metadata
    Show full item record
    Abstract
    Electric propulsion has been studied for a long time. Most of the electrically propelled vehicles that have been developed however have been ground vehicles. Recent research by NASA has promoted the development of electric aircraft. Most aircraft are currently powered by heavy gas turbine engines that require fueling. The development of electric motors to replace gas turbines would be a big step towards accomplishing more efficient aircraft propulsion. The primary objective of this research extends previous work by developing a high power density motor for aircraft propulsion. This design is novel because it does not require a dynamometer to provide the torque to drive the vehicle. Equally important for successful testing of the motor was the design and development of a spin pit interface that was used as a containment vessel during testing. The research led to a designed, fabricated, assembled, modeled, and tested motor. Voltages, currents and power outputs of the motor were measured and used to determine the motor??????s efficiency. The gaps between the motor??????s magnets were related to the current and power it produced, and modifications were made based on this relation. The vibrations of the motor were also studied and MATLAB codes were written and used to reduce these vibrations. Significant among the objectives was monitoring the temperatures of the motor??????s stators due to their close association with the rotating parts. The windage and friction losses between the stators and the magnets provided a challenging hurdle in the research. These windage and friction losses were predicted, analyzed and measured, and modifications were made to reduce them. Finally, results were compiled, tabulated, and analyzed. Results obtained before and after the modifications were compared, and these comparisons were used to assess the necessity and effectiveness of the modifications. The efficiency of the motor was found to be 82.9% and the power density was evaluated as 33.1 W/lb based on a rotor weight of 497 lb. It was concluded that the litz wire used in the motor has high, frequency related impedances that could be reduced but not eliminated.
    URI
    http://hdl.handle.net/1969.1/4933
    Collections
    • Texas A&M University at College Station

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV