Home
    • Login
    View Item 
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas A&M University at College Station
    • View Item
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas A&M University at College Station
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Physiochemical characteristics of controlled low strength materials influencing the electrochemical performance and service life of metallic materials

    Thumbnail
    Date
    2007-04-25
    Author
    Halmen, Ceki
    Metadata
    Show full item record
    Abstract
    Controlled Low Strength Materials (CLSM) are cementitious self-compacting materials, comprised of low cement content, supplementary cementing materials, fine aggregates, and water. CLSM is typically used as an alternative to conventional compacted granular backfill in applications, such as pavement bases, erosion control, bridge abutments, retaining walls, bedding and backfilling of pipelines. This dissertation presents the findings of an extensive study carried out to determine the corrosivity of CLSM on ductile iron and galvanized steel pipelines. The study was performed in two phases and evaluated more than 40 different CLSM mixture proportions for their corrosivity. An extensive literature survey was performed on corrosion of metals in soils and corrosion of reinforcement in concrete environments to determine possible influential factors. These factors were used as explanatory variables with multiple levels to identify the statistically significant factors. Empirical models were developed for percent mass loss of metals embedded in CLSM and exposed to different environments. The first and only service life models for ductile iron and galvanized steel pipes embedded in CLSM mixtures were developed. Models indicated that properly designed CLSM mixtures can provide an equal or longer service life for completely embedded ductile iron pipes. However, the service life of galvanized pipes embedded in CLSM should not be expected to be more than the service life provided by corrosive soils.
    URI
    http://hdl.handle.net/1969.1/4840
    Collections
    • Texas A&M University at College Station

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV