Time-lapse seismic monitoring of subsurface fluid flow

Date

2004-09-30

Journal Title

Journal ISSN

Volume Title

Publisher

Texas A&M University

Abstract

Time-lapse seismic monitoring repeats 3D seismic imaging over a reservoir to map fluid movements in a reservoir. During hydrocarbon production, the fluid saturation, pressure, and temperature of a reservoir change, thereby altering the acoustic properties of the reservoir. Time-lapse seismic analysis can illuminate these dynamic changes of reservoir properties, and therefore has strong potential for improving reservoir management. However, the response of a reservoir depends on many parameters and can be diffcult to understand and predict. Numerical modeling results integrating streamline fluid flow simulation, rock physics, and ray-Born seismic modeling address some of these problems. Calculations show that the sensitivity of amplitude changes to porosity depend on the type of sediment comprising the reservoir. For consolidated rock, high-porosity models show larger amplitude changes than low porosity models. However, in an unconsolidated formation, there is less consistent correlation between amplitude and porosity. The rapid time-lapse modeling schemes also allow statistical analysis of the uncertainty in seismic response associated with poorly known values of reservoir parameters such as permeability and dry bulk modulus. Results show that for permeability, the maximum uncertainties in time-lapse seismic signals occur at the water front, where saturation is most variable. For the dry bulk-modulus, the uncertainty is greatest near the injection well, where the maximum saturation changes occur. Time-lapse seismic methods can also be applied to monitor CO2 sequestration. Simulations show that since the acoustic properties of CO2 are very different from those of hydrocarbons and water, it is possible to image CO2 saturation using seismic monitoring. Furthermore, amplitude changes after supercritical fluid CO2 injection are larger than liquid CO2 injection. Two seismic surveys over Teal South Field, Eugene Island, Gulf of Mexico, were acquired at different times, and the numerical models provide important insights to understand changes in the reservoir. 4D seismic differences after cross-equalization show that amplitude dimming occurs in the northeast and brightening occurs in the southwest part of the field. Our forward model, which integrates production data, petrophysicals, and seismic wave propagation simulation, shows that the amplitude dimming and brightening can be explained by pore pressure drops and gas invasion, respectively.

Description

Citation