Exploring the relationships between vegetation measurements and temperature in residential areas by integrating LIDAR and remotely sensed imagery

Date

2006-10-30

Journal Title

Journal ISSN

Volume Title

Publisher

Texas A&M University

Abstract

Population growth and urban sprawl have contributed to the formation of significant urban heat island phenomena in Houston, Texas, the fourth largest city in the United States. The population growth in Houston was 25.8% between 1990 and 2000 nearly double the national average. The demand for information concerning the effects of urban and suburban development is growing. Houston is currently the only major US city lacking any kind of comprehensive city zoning ordinances. The Normalized Difference Vegetation Index (NDVI) has been used as a surrogate variable to estimate land surface temperatures at higher spatial resolutions, given the fact that a high-resolution remotely sensed NDVI can be created almost effortlessly and remotely sensed thermal data at higher resolutions is much more difficult to obtain. This has allowed researchers to study urban heat island dynamics at a micro-scale. However, this study suggests that a vegetation index alone might not be the best surrogate variable for providing information regarding the independent effects and level of contribution that tree canopy, grass, and low-lying plants have on surface temperatures in residential neighborhoods. This research combines LIDAR (Light Detection and Ranging) feature height data and high-resolution infrared aerial photos to measure the characteristics of the micro-structure of residential areas (residentialstructure), derives various descriptive vegetation measurement statistics, and correlates the spatial distribution of surface temperature to the type and amount of vegetation cover in residential areas. Regression analysis is used to quantify the independent influence that different residential-structures have on surface temperature. In regard to implementing changes at a neighborhood level, the descriptive statistics derived for residential-structure at a micro-scale may provide useful information to decision-makers and may reveal a guide for future developers concerned with mitigating the negative effects of urban heat island phenomena.

Description

Citation