Modeling and design of compact microwave components and systems for wireless communications and power transmission

Date

2004-09-30

Journal Title

Journal ISSN

Volume Title

Publisher

Texas A&M University

Abstract

The contribution of the work here presented involves three main topics: Wireless Power Transmission (WPT) technology, phased array systems, and microwave components design and modeling. The first topic presents the conceptual design of a WPT system at 2.45GHz with 90% efficiency and 1MW of DC output power. Second, a comparative study between 2.45 and 35GHz WPT operation is provided. Finally, the optimization of a taper distribution with reduced thermal constraints on a sandwich transmitter is realized. For a 250- and 375-m antenna radius, 89.7% of collection efficiency with 29% reduction in maximum power density (compared to the Gaussian), and 93% collection efficiency with 39% reduction of maximum power density, are obtained respectively with two split tapers. The reduction in maximum power density and the use of split taper are important to alleviate the thermal problems in high power transmission.

For the phased array project, the conceptual design of a small-scale system and in-depth analysis using two main approaches (statistical and field analysis) is realized. Practical aspects are addressed to determine the phased array main design features. The statistical method provides less accurate results than the field analysis since it is intended for large arrays. Careful theoretical analysis led to good correlation between statistical, field analysis and experimental results.

In the components chapter, efficient loop transitions used in a patch antenna array are designed at K- and W-band. Measured insertion loss (IL) K-band loop is under 0.4dB. The K- and W-band antenna array measured broadside gains are 23.6dB at 24.125GHz and 25dB at 76.5GHz with return loss under 9.54dB from 24 to 24.4GHz and 12 dB from 75.1 to 77.3GHz, respectively. Also, a multilayer folded line filter is designed at 5.8GHz and compared to planar ring filters. Improved measured bandwidth from 2GHz to 7.5GHz and IL of 1.2dB are obtained with approximately half the size of a planar ring resonator. Thirdly, a simplified switch model is implemented for use in broadband phased-shifters. The model presents very good fit to the measured results with an overall total error under 3%, magnitude error less than 8%, and phase errors less than ?0.4?.

Description

Citation