Home
    • Login
    View Item 
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas A&M University at College Station
    • View Item
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas A&M University at College Station
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Temperature behavior in the build section of multilateral wells

    Thumbnail
    Date
    2005-11-01
    Author
    Romero Lugo, Analis Alejandra
    Metadata
    Show full item record
    Abstract
    Intelligent well completions are increasingly being used in horizontal, multilateral, and multi-branching wells. Such completions are equipped with permanent sensors to measure temperature and pressure profiles, which must then be interpreted to determine the inflow profiles of the various phases produced that are needed to characterize the well??s performance. Distributed temperature measurements, using fiber optics in particular, are becoming increasingly more often applied. The value of an intelligent completion hinges on our capability to extract such inflow profiles or, at a minimum, to locate the entry locations of undesirable water or gas entries. In this research, a model of temperature behavior in multilateral wells was developed. The model predicts the temperature profiles in the build sections connecting the laterals to one another or to a main wellbore, thus accounting for the changing well angle relative to the temperature profile in the earth. In addition, energy balance equations applied at each junction predict the effects of mixing on the temperature above each junction. The multilateral wellbore temperature model was applied to a wide range of cases, in order to determine the conditions for which intelligent completions would be most useful. Parameters that were varied for this experiment included fluid thermal properties, absolute values of temperature and pressure, geothermal gradients, flow rates from each lateral, and the trajectories of each build section. From this parametric study, guidelines for an optimal application of intelligent well completion are represented.
    URI
    http://hdl.handle.net/1969.1/2614
    Collections
    • Texas A&M University at College Station

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV