Impact of the ligands on linear trimetal chains

Date

2004-09-30

Journal Title

Journal ISSN

Volume Title

Publisher

Texas A&M University

Abstract

Increasing attention has been given to the preparation and study of compounds with linear chains of metal atoms surrounded by four ligands. The majority of linear trimetal complexes are supported by dpa, the anion of dipyridylamine, having the general formula M3(dpa)4X2, where X is typically a monoanion. It has been shown that the behavior of the trinuclear system is far more complicated than might have been expected. Specifically, both symmetrical and unsymmetrical chains can occur and the interpretation of the magnetic properties of certain compounds has been a challenging task. Present in this dissertation is the bulk of work completed on an exploration of syntheses and characterizations of linear trichromium and trinickel compounds with different types of tridentate ligands. These ligands include 2,6-bis(phenylamino)pyridine,H2BPAP, (the corresponding dianion of this is denoted by BPAP) and a set of five unsymmetrical formamidines with different organic substituents ranging from strong electron-donating groups, such as -OCH3, to electron-withdrawing groups, e.g., F. Ligands impact on the trimetal chain in various ways. In the case of the M3(BPAP)42- ions, there are no axial interactions because these anionic species do not attract electron donating ligands. Thus they have properties which are different from those of M3(dpa)4X2 molecules. Most notably, the Ni3(BPAP)42- ion is diamagnetic and all three nickel ions can be described as square-planar, low-spin NiII centers. ivWhen unsymmetrical formamidines are used to support linear trichromium chains with a Cl anion at each end, the separation between terminal chromium atoms is significantly longer (ca. 0.15 - 0.25) than those in trichromium compounds reported earlier. Moreover, the unsymmetrical formamidinates tend to support symmetrical trichromium chains, while the rest of the known tridentate ligands typically yield unsymmetrical Cr36+ chains. The synthesis and structural studies of trinickel compounds with unsymmetrical formamidines are also presented.

Description

Citation