Home
    • Login
    View Item 
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas A&M University at College Station
    • View Item
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas A&M University at College Station
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Structure and function of circadian clock proteins and deuterium isotope effects in nucleic acid hydrogen bonds

    Thumbnail
    Date
    2005-08-29
    Author
    Vakonakis, Ioannis
    Metadata
    Show full item record
    Abstract
    Circadian oscillators or clocks are a widespread, endogenous class of oscillatory mechanisms that control the ~24h temporal pattern of diverse organism functions. In cyanobacteria this mechanism is formed by three proteins, KaiA, KaiB and KaiC. KaiA is shown here to be a two domain protein that directly interacts with KaiC and enhances the KaiC autokinase activity. The amino-terminal domain of KaiA can be structurally categorized as a pseudo-receiver, a class of proteins used in signaling cascades and activated by direct protein??protein interactions. The carboxy-terminal domain interacts directly with KaiC, is sufficient to enhance the KaiC autokinase activity in a manner similar to full-length KaiA, and adopts a unique, all α-helical dimeric fold. The structure of this domain raises interesting probabilities regarding the mode of KaiA??KaiC interaction. The two KaiA domains are shown to directly interact with each other, which suggests a possible mechanism of signal transfer from the amino to carboxy-terminal domain. Hydrogen bonds are of paramount importance in nucleic acid structure and function. Here we show that changes in the width and anharmonicity of vibrational potential energy wells of hydrogen bonded groups can be measured in nucleic acids and can possibly be correlated to structural properties, such as length. Deuterium/protium fractionation factors, which are sensitive to the vibrational potential well width, were measured for the imino sites of thymidine residues involved in A:T base pairs or free in solution, and a correlation was established between decreasing fractionation factors and increasing imino proton chemical shift, δH3. Similarly, a correlation was observed between δH3and deuterium isotope effects (DIE) on chemical shift of thymidine carbon atoms. Combined these results indicate that as hydrogen-bond strength increases the vibrational potential wells of imino protons widen with a corresponding increase in anharmonicity. However, trans-hydrogen bond DIE on carbon chemical shifts of A:T base-paired adenosine residues do not correlate with those measured on thymidine residues. We propose that this lack of correlation is due to DIE dependence on base-pair geometry, which is not easily measured by traditional NMR experiments.
    URI
    http://hdl.handle.net/1969.1/2195
    Collections
    • Texas A&M University at College Station

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV