Home
    • Login
    View Item 
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas A&M University at College Station
    • View Item
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas A&M University at College Station
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Machine Learning Applied in 2D Parasitic Extraction

    Thumbnail
    Date
    2014-12-15
    Author
    Li, Zhixing
    Metadata
    Show full item record
    Abstract
    With the scale of interconnect number grows to billions, parasitic capacitance extraction speed is an important issue for fast turn-around time for designers. In this thesis, we propose to build a regression model for the input interconnect geometry to predict the parasitic capacitance based on machine learning. A simplification algorithm is proposed to reduce the number of conductors for quicker and easier regression modeling and the regression models can improve by machine learning technique. Experimental results show that the proposed method is significantly faster than existing method and provides satisfactory accuracy.
    URI
    http://hdl.handle.net/1969.1/154203
    Collections
    • Texas A&M University at College Station

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV