Home
    • Login
    View Item 
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas A&M University at College Station
    • View Item
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas A&M University at College Station
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Symmetric Projections of the Entropy Region

    Thumbnail
    Date
    2014-11-19
    Author
    Cai, Xinyi
    Metadata
    Show full item record
    Abstract
    Entropy inequalities play a central role in proving converse coding theorems for network information theoretic problems. This thesis studies two new aspects of entropy inequalities. First, inequalities relating average joint entropies rather than entropies over individual subsets are studied. It is shown that the closures of the average entropy regions where the averages are over all subsets of the same size and all sliding windows of the same size respectively are identical, implying that averaging over sliding windows always suffices as far as unconstrained entropy inequalities are concerned. Second, the existence of non-Shannon type inequalities under partial symmetry is studied using the concepts of Shannon and non-Shannon groups. A complete classification of all permutation groups over four elements is established. With five random variables, it is shown that there are no non-Shannon type inequalities under cyclic symmetry.
    URI
    http://hdl.handle.net/1969.1/154097
    Collections
    • Texas A&M University at College Station

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV