Home
    • Login
    View Item 
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas A&M University at College Station
    • View Item
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas A&M University at College Station
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parallel Markov Chain Monte Carlo Methods for Large Scale Statistical Inverse Problems

    Thumbnail
    Date
    2014-04-18
    Author
    Wang, Kainan
    Metadata
    Show full item record
    Abstract
    The Bayesian method has proven to be a powerful way of modeling inverse problems. The solution to Bayesian inverse problems is the posterior distribution of estimated parameters which can provide not only estimates for the inferred parameters but also the uncertainty of these estimations. Markov chain Monte Carlo (MCMC) is a useful technique to sample the posterior distribution and information can be extracted from the sampled ensemble. However, MCMC is very expensive to compute, especially in inverse problems where the underlying forward problems involve solving differential equations. Even worse, MCMC is difficult to parallelize due to its sequential nature|that is, under the current framework, we can barely accelerate MCMC with parallel computing. We develop a new framework of parallel MCMC algorithms-the Markov chain preconditioned Monte Carlo (MCPMC) method-for sampling Bayesian inverse problems. With the help of a fast auxiliary MCMC chain running on computationally cheaper approximate models, which serves as a stochastic preconditioner to the target distribution, the sampler randomly selects candidates from the preconditioning chain for further processing on the accurate model. As this accurate model processing can be executed in parallel, the algorithm is suitable for parallel systems. We implement it using a modified master-slave architecture, analyze its potential to accelerate sampling and apply it to three examples. A two dimensional Gaussian mixture example shows that the new sampler can bring statistical efficiency in addition to increasing sampling speed. Through a 2D inverse problem with an elliptic equation as the forward model, we demonstrate the use of an enhanced error model to build the preconditioner. With a 3D optical tomography problem we use adaptive finite element methods to build the approximate model. In both examples, the MCPMC successfully samples the posterior distributions with multiple processors, demonstrating efficient speedups comparing to traditional MCMC algorithms. In addition, the 3D optical tomography example shows the feasibility of applying MCPMC towards real world, large scale, statistical inverse problems.
    URI
    http://hdl.handle.net/1969.1/152716
    Collections
    • Texas A&M University at College Station

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV