Parallel Seismic Ray Tracing

Date

2013-12-09

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Seismic ray tracing is a common method for understanding and modeling seismic wave propagation. The wavefront construction (WFC) method handles wavefronts instead of individual rays, thereby providing a mechanism to control ray density on the wavefront.

In this thesis we present the design and implementation of a parallel wavefront construction algorithm (pWFC) for seismic ray tracing. The proposed parallel algo- rithm is developed using the stapl library for parallel C++ code.We present the idea of modeling ray tubes with an additional ray in the center to facilitate parallelism. The parallel wavefront construction algorithm is applied to wide range of models such as simple synthetic models that enable us to study various aspects of the method while others are intended to be representative of basic geological features such as salt domes. We also present a theoretical model to understand the performance of the pWFC algorithm.

We evaluate the performance of the proposed parallel wavefront construction algorithm on an IBM Power 5 cluster. We study the effect of using different mesh types, varying the position of source and their number etc. The method is shown to provide good scalable performance for different models.

Load balancing is also shown to be the major factor hindering the performance of the algorithm. We provide two load balancing algorithms to solve the load imbalance problem. These algorithms will be developed as an extension of the current work.

Description

Citation