Home
    • Login
    View Item 
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas A&M University at College Station
    • View Item
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas A&M University at College Station
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Second-Order Accurate Method for Solving Radiation-Hydrodynamics

    Thumbnail
    Date
    2013-11-12
    Author
    Edwards, Jarrod Douglas
    Metadata
    Show full item record
    Abstract
    Second-order discretization for radiation-hydrodynamics is currently an area of great interest. Second-order methods used to solve the respective single-physics problems often differ fundamentally, making it difficult to combine them in a second- order manner. Here, we present a method for solving the equations of radiation hydrodynamics that is second-order accurate in space and time. We achieve this accuracy by combining modern methods used in standard single-physics calculations. This method is defined for a 1-D model of compressible fluid dynamics coupled with grey radiation diffusion and combines the MUSCL-Hancock method for solving the Euler equations with the TR/BDF2 scheme in time and a linear-discontinuous finite-element method in space for solving the equations of radiative transfer. Though uncommon for radiation diffusion calculations, the linear-discontinuous method is a standard for radiation transport applications. We address the challenges inherent to using different spatial discretizations for the hydrodynamics and radiation components and demonstrate how these may be overcome. Using the method of manufactured solutions, we show that the method is second-order accurate in space and time for both the equilibrium diffusion and streaming limit, and we show that the method is capable of computing radiative shock solutions accurately by comparing our results with semi-analytic solutions.
    URI
    http://hdl.handle.net/1969.1/151848
    Collections
    • Texas A&M University at College Station

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV