Home
    • Login
    View Item 
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas A&M University at College Station
    • View Item
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas A&M University at College Station
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Lurking Pathway Prediction And Pathway ODE Model Dynamic Analysis

    Thumbnail
    Date
    2013-11-18
    Author
    Zhang, Rengjing
    Metadata
    Show full item record
    Abstract
    Signaling pathway analysis is so important to study the causes of diseases and the treatment of drugs. Finding the lurking pathway from ligand to signature is a significant issue in studying the mechanism of how the cell response to the stimulation signal. However, recent literature based pathway analysis methods can only tell about highly differentially expressed pathways related to the experiment data, which may tell nothing about our interested specific ligand and signature. In this paper, we designed an approach to successfully detect the most reliable pathways for specific ligand and signature by solving multi-objective optimization problem on the bridge connecting two signaling pathways where the ligand and sig- nature locate. The pathway bridge consisted of enriched looping patterns refined the complicated entire protein interactions network with 39031 links, which made the approach time-saving. The approach was further applied to study the mod- ulator mechanism of the signal molecule, receptor, intermediate transfer proteins, transcription factor, and signature. With preliminary studied pathways, we then employed Ordinary Differential Equations(ODE) to modeling and dynamic analysis the signaling transduction. The biological reactions were represented in terms of differential equations, and the solu- tions to the group of equations were further be optimized to fit the RPPA experiment data. In order to find the potential signaling paths in specific disease and discovery the best therapy, coefficient variation analysis, system robustness study and system outcomes changes to perturbations were also utilized. Our approach successfully predicted the lurking pathway for the signal molecule T GF ?1 and the nova protein OC I AD2 in cancer microenviroment: T GF ?1 ?T GF ?R1 ? SM AD2/3 ? SM AD4/AR ? OC I AD2, and this result was verified by literature. Better than recent pathway analysis tool, our predicted pathway also took care of significant but relatively less regulated proteins in the transduction pro- cess. And by modeling the CCL2 pathway in MTB infected cells, J N K , cM Y C and P LC showed as the most significant modules. Hence, the drug treatments inhibit- ing J N K , cM Y C and P LC would effectively obstruct the increasing of MMPs and further prevent the Mtb infections.
    URI
    http://hdl.handle.net/1969.1/151844
    Collections
    • Texas A&M University at College Station

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV