Home
    • Login
    View Item 
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas A&M University at College Station
    • View Item
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas A&M University at College Station
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    In-plant Validation of Two Antimicrobial Agents Applied During the Production of Tenderized and/or Enhanced Beef Products

    Thumbnail
    Date
    2013-08-28
    Author
    Nelson, Kayla
    Metadata
    Show full item record
    Abstract
    Numerous outbreaks of foodborne illness have been attributed to non-intact beef (e.g., tenderized, marinated, and enhanced) products contaminated with Escherichia coli O157:H7. Organic acids are commonly utilized in the beef industry as antimicrobial interventions, which must be validated to eliminate or reduce E. coli O157:H7 to an undetectable level. Rifampicin-resistant Biotype I E. coli O157:H7 surrogate microorganisms (ATCC BAA-1427, BAA-1428, and BAA-1430) were applied as a cocktail (7.8 log10 CFU/ml) to three beef products (boneless strip loins, top sirloin butts, and bottom sirloin flaps) prior to treatment with an antimicrobial intervention (2.5% Beefxide or 2.9% lactic acid). Products were then subjected to a single or multiple pass tenderization and/or marination process. Beefxide and lactic acid treatments resulted in statistically significant log reductions of the microorganisms (P < 0.05) on the surfaces for all three products. Surrogate microorganisms were recovered from interior samples of all three products after mechanical tenderization. Additionally, surrogate concentrations recovered from flap surface and internal samples taken post-tumbling and marination were statistically similar (P < 0.05). These data indicate that tenderization and marination processes can transfer microorganisms into the interior of whole-muscle cuts, and suggest Beefxide and lactic acid may be similar in their efficacy as an antimicrobial applied as an intervention in the production of non-intact beef products.
    URI
    http://hdl.handle.net/1969.1/151326
    Collections
    • Texas A&M University at College Station

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV