Thermo-Poroelastic Fracture Propagation Modeling with Displacement Discontinuity Boundary Element Method

Date

2013-08-01

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

The effect of coupled thermo-poroelastic behavior on hydraulic fracture propagation is of much interest in geothermal- and petroleum-related geomechanics problems such as wellbore stability and hydraulic fracturing as pore pressure and temperature variations can significantly induce rock deformation, fracture initiation, and propagation. In this dissertation, a two-dimensional (2D) boundary element method (BEM) was developed to simulate the fully coupled thermo-poroelastic fracture propagation process. The influence of pore pressure and temperature changes on the fracture propagation length and path, as well as on stress and pore pressure distribution near wellbores and fractures, was considered in isotropic and homogeneous rock formations.

The BEM used in this work consists of the displacement discontinuity (DD) method and the fictitious stress (FS) method. Also, a combined FS-DD numerical model was implemented for the hydraulically or thermally-induced fractures in the vicinity of a wellbore.

The linear elastic fracture mechanics (LEFM) theory was adopted to numerically model within the framework of poroelasticity and thermo-poroelasticity theory. For high accuracy of crack tip modeling, a special displacement discontinuity tip element was developed and extended to capture the pore pressure and temperature influence at the tip. For poroelastic fracture propagation, a steadily propagating crack driven by fluid pressure was modeled to find the effect of pore pressure on crack path under the two limiting poroelastic conditions (undrained and drained). The results indicate that the pore pressure diffusion has no influence on the crack growth under the undrained condition because the crack propagation velocity is too fast for the diffusion effect to take place. On the other hand, its influence on the crack path under the drained condition with its low propagation velocity has significance because it induces a change in principal stress direction, resulting in an alteration of fracture orientation.

For the thermal fracturing, when the rock around a wellbore and a main fracture is cooled by injecting cold water in a hot reservoir, the rapid decrease in temperature gives rise to thermal stress, which causes a crack to initiate and propagate into the rock matrix. The single and multiple fracture propagation caused by transient cooling in both thermoelastic and poro-thermoelastic rock were numerically modeled. The results of this study indicate that the thermal stresses induced by cooling may exceed the in-situ stress in the reservoir, creating secondary fractures perpendicular to main fracture. Furthermore, the faster cooling rate produces longer crack extension of the secondary thermal fractures. This implies that the faster cooling induces a higher tensile stress zone around the fracture, which tends to produce larger driving forces to make the secondary fractures penetrate deeper into the geothermal reservoir.

Description

Citation