Assessment of Water Resources in A Humid Watershed and A Semi-arid Watershed; Neches River Basin, TX and Canadian River Basin, NM

Date

2013-07-16

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Water is the most important resource on Earth. Climate and land cover changes are two important factors that directly influenced water resources. This research provides important information for water resources management and contributes on understanding of the responses of water resources to climate and land cover changes in two different climates.

The Neches River watershed located in a humid subtropical climate had a 0.7 ?C increase in temperature and a 16.3 % increase in precipitation. Developed and crop land covers increased whereas vegetation cover decreased, as a result of human activities. Hydrologic responses to climate and land cover changes resulted in the increases of surface runoff (15.0 %), soil water content (2.7 %), evapotranspiration (20.1 %), and a decrease of groundwater discharge (9.2 %). Surface runoff had an increasing trend with precipitation whereas soil water content was sensitive to changes in land cover, especially human intervention.

The Canadian River watershed, a semi-arid watershed, experienced a 0.9 ?C increase in temperature and a 10.9 % decrease in precipitation. Land cover was converted from developed and crop lands into barren land and grass covers, as a result of the decrease in human activity. The change of grass and forest covers into bush/shrub cover is thought to be linked to climate change. Surface runoff, groundwater discharge, soil water content, and evapotranspiration were all decreased by 10.2 %, 10.0 %, 7.7 %, and 9.4%, respectively. Hydrologic parameters generally follow similar patterns to that of precipitation.

The trend in water resources followed a similar trend of precipitation for the two watersheds with different climates; a humid watershed and a semi-arid watershed. The humid climate watershed, the Neches River watershed, experienced increasing trends in temperature and precipitation. Groundwater discharge was sensitive to changes in land cover caused by human activities. The semi-arid watershed, the Canadian River watershed, had an increase in precipitation and a decrease in precipitation. Conversion of developed and crop land covers into barren and grass land covers was thought to be the result of the decrease in human activity. The volume of soil water was relatively offset by a combination of precipitation changes and land-cover changes.

Description

Citation