Home
    • Login
    View Item 
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas A&M University at College Station
    • View Item
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas A&M University at College Station
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Study of Porous Transitions of Layer-By-Layer Thin Films and Patterning Multilayers

    Thumbnail
    Date
    2013-05-24
    Author
    Cho, Chungyeon
    Metadata
    Show full item record
    Abstract
    This thesis research focuses on fundamental understanding regarding the morphological transitions of weak polyelectrolyte multilayers (PEMs) formed by the layer-by-layer (LbL) electrostatic assembly of oppositely charged polymers. he first part of this thesis focuses on patterning polyelectrolyte multilayers that are able to undergo transitions from continuous films to porous materials by using hydrogel stamps. The stamping process is able to locally etch and pattern the porous transition in the LbL films by using reactive wet stamping (r-WETS). It was found that r-WETS of PEMs can also enable the modification of chemical functionality. The second part is an investigation about morphological changes of weak polyelectrolyte multilayers assembled with PAH and PAA using r-WETS in which hydrogel stamp material was soaked into various salt solutions and then applied to the LbL films. Also, in this study we presented a novel strategy to create a continuous gradient structure in thickness or porosity along the lateral direction of the thin films using concentration gradient salt stamping. The third part is an investigation regarding the mechanism of the transition from a continuous morphology to a porous morphology within weak polyelectrolyte multilayers. These morphological changes were able to be created by both acidic and basic post-assembly treatments, showing various morphological transitions from the introduction of porosity to the collapse of these porous structures and the eventual dissolution of the films. A similar observation of morphological transitions in weak polyelectrolyte multilayers was obtained by applying an electric field to the films in the fourth part of this thesis. Exposure to an electric field resulted in the creation of a porous structure, which can be ascribed to local changes in pH and subsequent structural rearrangements of the weak polyelectrolyte constituents. The final part of this thesis is to make PEMs into nanostructured matrices for inorganic synthesis. Multilayers possessing ion-exchangeable carboxylic acid groups were used for binding metal catalysts such as platinum (Pt) nanoparticles (NPs) within the film. Therefore, polyelectrolyte multilayers were able to stabilize catalytic Pt NPs in order to increase the useful time of catalyst materials suitable for use in proton exchange membrane fuel cells.
    URI
    http://hdl.handle.net/1969.1/151024
    Collections
    • Texas A&M University at College Station

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV