Evalutaion of Multi-Stage Sandstone Acidizing Uging an Organic Mud Acid and a Clay Stabalizer

Date

2013-05-29

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Acidizing sandstone reservoirs is a complex process. If not fully studied, it could lead to formation damage. A combination of HCl/HF has been widely used to stimulate sandstone reservoirs. However, the success rate is low due to the complexity of the reactions involved in this process. These reactions result in potentially damaging precipitation and cause formation damage. The problem is more severe when dealing with Bandera sandstone formations that contain a high concentration of carbonate minerals and clay particles. The purpose of this study is to present and evaluate multi-stage acid injection into the Bandera sandstone cores to remove formation damage.

In this study, coreflood experiments were conducted on Bandera sandstone cores (1.5 in. x 6 in.) at a flow rate of 4 cm^3/ min and temperature of 140?F. A mixture of formic acid and HF was used as an organic mud acid. Preflush of hydrochloric and formic acid was employed to remove carbonate minerals. Bandera sandstone cores contain a considerable amount of HCl sensitive clays. So another stage was employed to cover clay minerals and prevent HCl attack on the surface of clay particles. Different clay stabilizers as well as preflush pore volume were examined in this study. At the end, this multi-stage treatment design was tested on a Berea sandstone core to investigate the impact of mineralogy. During each experiment effluent samples were collected. Samples were analyzed using Inductively Coupled Plasma (ICP) and Scanning Electron Microscopy (SEM) to investigate reaction kinetics and chemistry of precipitation.

Chemical analysis confirmed incompatibility of HCl with clays in Bandera cores at 140?F. Clay stabilizer CSA showed the ability to prevent HCl attack on the clay particle?s surface. As a result, a coreflood experiment conducted using CSA led to permeability improvement. The result of the coreflood experiment conducted using CSC indicated that this chemical is able to exchange cations with clay particles, however permeability decreased due to an insufficient injection of preflush. As in another experiment, increasing preflush pore volume using CSC resulted in permeability improvement. CSB completely failed to cover clay minerals and permeability decreased drastically at the end of the treatment.

Description

Citation