In Vitro Function of Frozen-Thawed Bottlenose Dolphin (Tursiops truncatus) Spermatozoa Undergoing Sorting and Recyopreservation

Date

2010-08-19

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Artificial insemination (AI) with sex-sorted bottlenose dolphin spermatozoa provides female calves for obtaining more cohesive social groups and optimum genetic management of captive populations. However, distance of animals to the sorting facility represents a limit to the procedure. Although one bottlenose dolphin calf has been born using spermatozoa from frozen-thawed, sorted and recryopreserved spermatozoa, critical evaluation of the steps involved in this process is required to maximize its efficiency for future AIs and expansion of the technology to other species. Two experiments were designed to determine the efficiency of the sorting process and the quality of frozen-thawed bottlenose dolphin spermatozoa during sorting and recryopreservation. In experiment 1, the effect of two washing media (with and without 4 percent egg yolk, v/v) following density gradient centrifugation (DGC) on sperm recovery rate and in vitro characteristics of cryopreserved spermatozoa was examined. In experiment 2, cryopreserved semen was used to compare the effects of two recryopreservation methods (conventional straw freezing and directional freezing) on in vitro sperm characteristics of control (non-sorted) and sorted spermatozoa. Egg yolk supplementation of the washing medium in experiment 1 did not influence (P > 0.05) the sperm recovery rate, however, sperm motility parameters and viability were improved (P < 0.05). For Experiment 2, motility parameters and viability were influenced by stage of sex-sorting process, sperm type (non-sorted and sorted) and freezing method (P < 0.05). After recryopreservation, sorted spermatozoa frozen with the directional freezing method maintained higher (P < 0.05) motility parameters over the 24 h incubation period compared to spermatozoa frozen using straws. Quality of sperm DNA of nonsorted spermatozoa, as assessed by the SCSA, remained unchanged throughout the process. However, a possible interaction between Hoechst 33342 and acridine orange was observed in sorted samples. After recryopreservation, viability of sorted spermatozoa was higher (P < 0.05) than that of non-sorted spermatozoa across all time points. The percentages of viable spermatozoa determined by light (eosin-nigrosin) and fluorescence microscopy (propidium iodide) techniques were correlated (R^2=0.79, P < 0.001). Collective results indicate that bottlenose dolphin spermatozoa undergoing cryopreservation, sorting and recryopreservation are of adequate quality for use in AI.

Description

Citation