Show simple item record

dc.contributorCriscione, John
dc.creatorHudson, Kristen Kay
dc.date.accessioned2004-11-15T19:53:01Z
dc.date.accessioned2017-04-07T19:49:11Z
dc.date.available2004-11-15T19:53:01Z
dc.date.available2017-04-07T19:49:11Z
dc.date.created2004-08
dc.date.issued2004-11-15
dc.identifier.urihttp://hdl.handle.net/1969.1/1271
dc.description.abstractThe way in which the myocardium responds to its mechanical environment must be understood in order to develop reasonable treatments for congestive heart failure. The first step toward this understanding is to characterize and quantify the cardiac microstructure in healthy and diseased hearts. Myocardium has a laminar architecture made up of myolaminae, which are sheets of myocytes surrounded by a collagen weave. By enhancing the contrast between the myocytes and the surrounding collagen, the myocardium can be investigated and its laminar structure can be quantified. Many of the techniques that have been used to view the microstructure of the heart require the use of toxic or caustic chemicals for fixation or staining. An efficient imaging method that uses polarization microscopy and enhances the contrast between the collagen and myocytes while minimizing the use of harmful chemicals was developed in this research. Collagen is birefringent; therefore its visibility should be enhanced through polarization microscopy and image processing. The sheet angles were viewed directly by cutting slices of a rat septum perpendicular to the fiber angle. Images of different polarization combinations were taken and a region of interest was selected on the sample. Image processing techniques were used to reduce the intensity variation on the images and account for the variable gain of the camera. The contrast between the collagen and myocytes was enhanced by comparing adjusted images to the background and looking at a single image this comparison produced. Although the contrast was enhanced, the embedding media reduced the collagen signal and the enhancement was not as striking as expected.
dc.language.isoen_US
dc.publisherTexas A&M University
dc.subjectquantitative histology
dc.subjectmyolamina
dc.subjectheart
dc.subjectmicrostructure
dc.subjectpolarization microscopy
dc.titleDevelopment of imaging methods to quantify the laminar microstructure in rat hearts
dc.typeBook
dc.typeThesis


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record