Home
    • Login
    View Item 
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas A&M University at College Station
    • View Item
    •   TDL DSpace Home
    • Federated Electronic Theses and Dissertations
    • Texas A&M University at College Station
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Diagnosing spatial variation patterns in manufacturing processes

    Thumbnail
    Date
    2004-09-30
    Author
    Lee, Ho Young
    Metadata
    Show full item record
    Abstract
    This dissertation discusses a method that will aid in diagnosing the root causes of product and process variability in complex manufacturing processes when large quantities of multivariate in-process measurement data are available. As in any data mining application, this dissertation has as its objective the extraction of useful information from the data. A linear structured model, similar to the standard factor analysis model, is used to generically represent the variation patterns that result from the root causes. Blind source separation methods are investigated to identify spatial variation patterns in manufacturing data. Further, the existing blind source separation methods are extended, enhanced and improved to be a more effective, accurate and widely applicable method for manufacturing variation diagnosis. An overall strategy is offered to guide the use of the presented methods in conjunction with alternative methods.
    URI
    http://hdl.handle.net/1969.1/122
    Collections
    • Texas A&M University at College Station

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by @mire NV