Toward understanding predictability of climate: a linear stochastic modeling approach

Date

2004-11-15

Journal Title

Journal ISSN

Volume Title

Publisher

Texas A&M University

Abstract

This dissertation discusses the predictability of the atmosphere-ocean climate system on interannual and decadal timescales. We investigate the extent to which the atmospheric internal variability (weather noise) can cause climate prediction to lose skill; and we also look for the oceanic processes that contribute to the climate predictability via interaction with the atmosphere.

First, we develop a framework for assessing the predictability of a linear stochastic system. Based on the information of deterministic dynamics and noise forcing, various predictability measures are defined and new predictability-analysis tools are introduced. For the sake of computational efficiency, we also discuss the formulation of a low-order model within the context of four reduction methods: modal, EOF, most predictable pattern, and balanced truncation.

Subsequently, predictabilities of two specific physical systems are investigated within such framework.

The first is a mixed layer model of SST with focus on the effect of oceanic advection.Analytical solution of a one-dimensional model shows that even though advection can give rise to a pair of low-frequency normal modes, no enhancement in the predictability is found in terms of domain averaged error variance. However, a Predictable Component Analysis (PrCA) shows that advection can play a role in redistributing the predictable variance. This analytical result is further tested in a more realistic two-dimensional North Atlantic model with observed mean currents.

The second is a linear coupled model of tropical Atlantic atmosphere-ocean system. Eigen-analysis reveals that the system has two types of coupled modes: a decadal meridional mode and an interannual equatorial mode. The meridional mode, which manifests itself as a dipole pattern in SST, is controlled by thermodynamic feedback between wind, latent heat flux, and SST, and modified by ocean heat transport. The equatorial mode, which manifests itself as an SST anomaly in the eastern equatorial basin, is dominated by dynamic feedback between wind, thermocline, upwelling, and SST. The relative strength of thermodynamic vs dynamic feedbacks determines the behavior of the coupled system, and enables the tropical Atlantic variability to be more predictable than the passive-ocean scenario.

Description

Citation