Show simple item record

dc.contributorDing, Yu
dc.creatorKim, Pansoo
dc.date.accessioned2004-11-15T19:45:40Z
dc.date.accessioned2017-04-07T19:48:50Z
dc.date.available2004-11-15T19:45:40Z
dc.date.available2017-04-07T19:48:50Z
dc.date.created2004-08
dc.date.issued2004-11-15
dc.identifier.urihttp://hdl.handle.net/1969.1/1076
dc.description.abstractThis dissertation presents a methodology for the near optimal design of fixture layouts in multi-station assembly processes. An optimal fixture layout improves the robustness of a fixture system, reduces product variability and leads to manufacturing cost reduction. Three key aspects of the multi-station fixture layout design are addressed: a multi-station variation propagation model, a quantitative measure of fixture design, and an effective and efficient optimization algorithm. Multi-station design may have high dimensions of design space, which can contain a lot of local optima. In this dissertation, I investigated two algorithms for optimal fixture layout designs. The first algorithm is an exchange algorithm, which was originally developed in the research of optimal experimental designs. I revised the exchange routine so that it can remarkably reduce the computing time without sacrificing the optimal values. The second algorithm uses data-mining methods such as clustering and classification. It appears that the data-mining method can find valuable design selection rules that can in turn help to locate the optimal design efficiently. Compared with other non-linear optimization algorithms such as the simplex search method, simulated annealing, genetic algorithm, the data-mining method performs the best and the revised exchange algorithm performs comparably to simulated annealing, but better than the others. A four-station assembly process for a sport utility vehicle (SUV) side frame is used throughout the dissertation to illustrate the relevant concepts and the resulting methodology.
dc.language.isoen_US
dc.publisherTexas A&M University
dc.subjectFixture Layout Design
dc.subjectData-mining Method
dc.subjectRevised Exchange Algorithm
dc.subjectE-optimality
dc.titleNear optimal design of fixture layouts in multi-station assembly processes
dc.typeThesis


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record