Browsing by Subject "Spherical Fourier transform"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Flexible fitting in 3D EM(2012-12) Bettadapura Raghu, Prasad Radhakrishna; Bajaj, Chandrajit; Crawford, Richard; Chen, Dongmei; Truskett, Thomas; Ying, LexingIn flexible fitting, the high-resolution crystal structure of a molecule is deformed to optimize its position with respect to a low-resolution density map. Solving the flexible fitting problem entails answering the following questions: (A) How can the crystal structure be deformed? (B) How can the term "optimum" be defined? and (C) How can the optimization problem be solved? In this dissertation, we answer the above questions in reverse order. (C) We develop PFCorr, a non-uniform SO(3)-Fourier-based tool to efficiently conduct rigid-body correlations over arbitrary subsets of the space of rigid-body motions. (B) We develop PF2Fit, a rigid-body fitting tool that provides several useful definitions of the optimal fit between the crystal structure and the density map while using PFCorr to search over the space of rigid-body motions (A) We develop PF3Fit, a flexible fitting tool that deforms the crystal structure with a hierarchical domain-based flexibility model while using PF2Fit to optimize the fit with the density map. Our contributions help us solve the rigid-body and flexible fitting problems in unique and advantageous ways. They also allow us to develop a generalized framework that extends, breadth-wise, to other problems in computational structural biology, including rigid-body and flexible docking, and depth-wise, to the question of interpreting the motions inherent to the crystal structure. Publicly-available implementations of each of the above tools additionally provide a window into the technically diverse fields of applied mathematics, structural biology, and 3D image processing, fields that we attempt, in this dissertation, to span.