Browsing by Subject "Deposition"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Computational Fluid Dynamics Study of Aerosol Transport and Deposition Mechanisms(2012-07-16) Tang, YingjieIn this work, various aerosol particle transport and deposition mechanisms were studied through the computational fluid dynamics (CFD) modeling, including inertial impaction, gravitational effect, lift force, interception, and turbophoresis, within different practical applications including aerosol sampling inlet, filtration system and turbulent pipe flows. The objective of the research is to obtain a better understanding of the mechanisms that affect aerosol particle transport and deposition, and to determine the feasibility and accuracy of using commercial CFD tools in predicting performance of aerosol sampling devices. Flow field simulation was carried out first, and then followed by Lagrangian particle tracking to obtain the aerosol transport and deposition information. The CFD-based results were validated with experimental data and empirical correlations. In the simulation of the aerosol inlet, CFD-based penetration was in excellent agreement with experimental results, and the most significant regional particle deposition occurred due to inertial separation. At higher free wind speeds gravity had less effect on particle deposition. An empirical equation for efficiency prediction was developed considering inertial and gravitational effects, which will be useful for directing design of similar aerosol inlets. In the simulation of aerosol deposition on a screen, a "virtual surface" approach, which eliminates the need for the often-ambiguous user defined functions, was developed to account for particle deposition due to interception. The CFD-based results had a good agreement compared with experimental results, and also with published empirical correlations for interception. In the simulation of turbulent deposition in pipe flows, the relation between particle deposition velocity and wall-normal turbulent velocity fluctuation was quantitative determined for the first time, which could be used to quantify turbulent deposition, without having to carry out Lagrangian particle tracking. It suggested that the Reynolds stress model and large eddy simulation would lead to the most accurate simulated aerosol deposition velocity. The prerequisites were that the wall-adjacent y+ value was sufficiently low, and that sufficient number of prism layers was applied in the near-wall region. The "velocity fluctuation convergence" would be useful criterion for judging the adequacy of a CFD simulation for turbulent deposition.Item Development of a non-isothermal compositional reservoir simulator to model asphaltene precipitation, flocculation, and deposition and remediation(2014-05) Darabi, Hamed; Sepehrnoori, Kamy, 1951-Asphaltene precipitation, flocculation, and deposition in the reservoir and producing wells cause serious damages to the production equipment and possible failure to develop the reservoirs. From the field production prospective, predicting asphaltene precipitation, flocculation, and deposition in the reservoir and wellbore may avoid high expenditures associated with the reservoir remediation, well intervention techniques, and field production interruption. Since asphaltene precipitation, flocculation, and deposition strongly depend on the pressure, temperature, and composition variations (e.g. phase instability due to CO2 injection), it is important to have a model that can track the asphaltene behavior during the entire production system from the injection well to the production well, which is absent in the literature. Due to economic concerns for asphaltene related problems, companies spend a lot of money to design their own asphaltene inhibition and remediation procedures. However, due to the complexity and the lack of knowledge on the asphaltene problems, these asphaltene inhibition and remediation programs are not always successful. Near-wellbore asphaltene inhibition and remediation techniques can be divided into two categories: changing operating conditions, and chemical treatment of the reservoir. Although, the field applications of these procedures are discussed in the literature, a dynamic model that can handle asphaltene inhibition and remediation in the reservoir is missing. In this dissertation, a comprehensive non-isothermal compositional reservoir simulator with the capability of modeling near-wellbore asphaltene inhibition and remediation is developed to address the effect of asphaltene deposition on the reservoir performance. This simulator has many additional features compared to the available asphaltene reservoir simulators. We are able to model asphaltene behavior during primary, secondary, and EOR stages. A new approach is presented to model asphaltene precipitation and flocculation. Adsorption, entrainment, and pore-throat plugging are considered as the main mechanisms of the asphaltene deposition. Moreover, we consider porosity, absolute permeability, and oil viscosity reductions due to asphaltene. It is well known that the asphaltene deposition on the rock surface changes the wettability of the rock towards oil-wet condition. Although many experiments in the literature have been conducted to understand the physics underlying wettability alteration due to asphaltene deposition, a comprehensive mathematical model describing this phenomenon is absent. Based on the available experimental data, a wettability alteration model due to asphaltene deposition is proposed and implemented into the simulator. Furthermore, the reservoir simulator is coupled to a wellbore simulator to model asphaltene deposition in the entire production system, from the injection well to the production well. The coupled reservoir/wellbore model can be used to track asphaltene deposition, to diagnose the potential of asphaltene problems in the wellbore and reservoir, and to find the optimum operating conditions of the well that minimizes asphaltene problems. In addition, the simulator is capable of modeling near-wellbore asphaltene remediation using chemical treatment. Based on the mechanisms of the asphaltene-dispersant interactions, a dynamic modeling approach for the near-wellbore asphaltene chemical treatments is proposed and implemented in the simulator. Using the dynamic asphaltene remediation model, we can optimize the asphaltene treatment plan to reduce asphaltene related problems in a field. The results of our simulations show that asphaltene precipitation, flocculation, and deposition in the reservoir and wellbore are dynamic processes. Many parameters, such as oil velocity, wettability alteration, pressure, temperature, and composition variations influence the trend of these processes. In the simulation test cases, we observe that asphaltene precipitation, flocculation, and deposition can occur in primary production, secondary production, or EOR stages. In addition, our results show that the wettability alteration has the major effect on the performance of the reservoir, comparing to the permeability reduction. During CO2 flooding, asphaltene precipitation occurs mostly at the front, and asphaltene deposition is at its maximum close to the reservoir boundaries where the front velocity is at its minimum. In addition, the results of the coupled reservoir/wellbore simulator show that the behavior of asphaltene in the wellbore and reservoir are fully coupled with each other. Therefore, a standalone reservoir or wellbore simulator is not able to predict the asphaltene behavior properly in the entire system. Finally, we show that the efficiency of an asphaltene chemical treatment plan depends on the type of dispersant, amount of dispersant, soaking time, number of treatment jobs, and the time period between two treatment jobs.Item Experimental investigation of ice-covered deltas : the effects of ice cover on delta morphology(2016-05) Lim, Ye Jin; Kim, Wonsuck; Levy, Joseph S; Mohrig, David; Johnson, JoelDeltas are dynamic systems that can provide important information on past climate conditions (Helland-Hansen and Martinsen, 1996; Hill et al., 2001; Kim et al., 2006; Bianchi and Allison, 2009). Arctic deltas have the potential to preserve significant information about climate change in one of the most temperature-sensitive regions of the Earth (Walker 1998; Walker and Hudson, 2003; Bianchi and Allison, 2009; Stocker, 2014). Here we present experimental results assessing the effects of ice cover on delta morphodynamics and depositional processes to identify signatures of ice cover presence during deposition. Ice cover drives spatially varying sediment transport on the subaqueous delta clinoform through sub-ice channels, which then leads to the development of (1) multiple extended delta lobes built by elongated, subaqueous sediment wedges and (2) highly variable bathymetry with increasing topographic roughness up to a water depth above which bottom-fast ice cover exists. These seascape features are unique to ice-covered deltas, and can therefore serve as diagnostic markers of past climate conditions and indicators of climate change captured on vulnerable Arctic coasts.Item An experimental study of film cooling, thermal barrier coatings and contaminant deposition on an internally cooled turbine airfoil model(2012-05) Davidson, Frederick Todd; Bogard, David G.; Kiehne, Thomas M.; Kohli, Atul; Ezekoye, Ofodike A.; Webber, Michael E.Approximately 10% of all energy consumed in the United States is derived from high temperature gas turbine engines. As a result, a 1% increase in engine efficiency would yield enough energy to satisfy the demands of approximately 1 million homes and savings of over $800 million in fuel costs per year. Efficiency of gas turbine engines can be improved by increasing the combustor temperature. Modern engines now operate at temperatures that far exceed the material limitations of the metals they are comprised of in the pursuit of increased thermal efficiency. Various techniques to thermally protect the turbine components are used to allow for safe operation of the engines despite the extreme environments: film cooling, internal convective cooling, and thermal barrier coatings. Historically, these thermal protection techniques have been studied separately without account for any conjugate effects. The end goal of this work is to provide a greater understanding of how the conjugate effects might alter the predictions of thermal behavior and consequently improve engine designs to pursue increased efficiency. The primary focus of this study was to complete the first open literature, high resolution experiments of a modeled first stage turbine vane with both active film cooling and a simulated thermal barrier coating (TBC). This was accomplished by scaling the thermal behavior of a real engine component to the model vane using the matched Biot number method. Various film cooling configurations were tested on both the suction and pressure side of the model vane including: round holes, craters, traditional trenches and a novel modified trench. IR thermography and ribbon thermocouples were used to measure the surface temperature of the TBC and the temperature at the interface of the TBC and vane wall, respectively. This work found that the presence of a TBC significantly dampens the effect of altering film cooling conditions when measuring the TBC interface temperature. This work also found that in certain conditions adiabatic effectiveness does not provide an accurate assessment of how a film cooling design may perform in a real engine. An additional focus of this work was to understand how contaminant deposition alters the cooling performance of a vane with a TBC. This work focused on quantifying the detrimental effects of active deposition by seeding the mainstream flow of the test facility with simulated molten coal ash. It was found that in most cases, except for round holes operating at relatively high blowing ratios, the performance of film cooling was negatively altered by the presence of contaminant deposition. However, the cooling performance at the interface of the TBC and vane wall actually improved with deposition due to the additional thermal resistance that was added to the exterior surface of the model vane.Item Physical modeling of a prograding delta on a mobile substrate : dynamic interactions between progradation and deformation(2016-08) Jung, Eunsil; Kim, Wonsuck; Mohrig, David; Olariu, CornelThe subsurface architecture of a prograding delta on a mobile substrate (e.g., salt) is a product of the complex interplay between deposition and subsidence. Previous studies focused mainly on structural deformation of a salt layer in response to tectonic forcing, leaving the dynamic feedback between sedimentation and subsidence unexplored. We present results from physical experiments of delta progradation on a mobile substrate. Five carefully designed experiments were performed to understand the effects of delta progradation rate on the shape and dimension of salt deformation and associated delta deposition. All of the runs had constant sediment and water discharges, but the water depth and mobile substrate thickness varied from 1 cm to 3 cm and from 2 cm to 4 cm, respectively. The results showed that increasingly deeper water depths slowed the shoreline progradation rate, while increasingly thinner salt thickness accelerated delta progradation. The experimental results also provided a wide range of shoreline advance and subsidence rates that show changes in the shape and dimension of the salt deformation structure. Runs with fast shoreline progradation showed isolated salt domes developed internally on the delta plain and a rough platform pattern along the shoreline due to lobes built by channel flow between upwelled salt structures. However, runs with slow shoreline progradation developed long connected salt ridges around the toe of the delta, limiting sediment transport beyond the ridges. This overall pattern in salt structures is time dependent. As a delta surface grows larger and the shoreline progradational rate autogenically decreases with time, chances to develop isolated salt domes decrease but more connected long salt ridges occur. Physical modeling of a delta on a mobile substrate is important in predicting the mechanism for large-scale salt basin stratigraphy under a high sediment supply that interacts with the substrate.Item Physical models of tsunami deposition : an investigation of morphodynamic controls(2013-05) Delbecq, Katherine Lynn; Kim, Wonsuck; Mohrig, DavidA key goal of tsunami research is to quantitatively reconstruct flow parameters from paleotsunami deposits in order to better understand the geohazards of coastal areas. These reconstructions rely on grain-size and thickness measurements of tsunami deposits, combined with simple models that allow an inversion from deposit characteristics to wave characteristics. I conducted flume experiments to produce a data set that can be used to evaluate inversion models for tsunami deposition under controlled boundary conditions. Key variables in the flume experiments are sediment grain-size distribution, flow velocity and depth, and depth of water ponded in the flume before the tsunami bore was released. Physical experiments were run in a 32 m-long outdoor flume at The University of Texas at Austin. The flume has a head box with a specialized mechanical lift gate that allows instantaneous release of water to create a bore. Various sediment mixtures (silt to very coarse sand) are introduced to the upstream end of the channel as a low dune positioned just below the lift gate. The bore entrained the sediment mixture, producing an unambiguous suspension-dominated deposit in the downstream half of the channel. Deposits were sampled for grain-size and thickness trends. The experimental results capture characteristics of many recent and paleotsunami deposits, including consistent fining in the transport direction. In addition to overall fining, trends in deposit sorting and coarse (D95) and fine (D10) fractions reveal the importance of sediment-source grain-size distribution on tsunami deposit attributes.