Browsing by Subject "Biomedical optics"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Depth resolved diffuse reflectance spectroscopy(2015-05) Hennessy, Richard J.; Markey, Mia Kathleen; Tunnell, James W.This dissertation focuses on the development of computational models and algorithms related to diffuse reflectance spectroscopy. Specifically, this work aims to advance diffuse reflectance spectroscopy to a technique that is capable of measuring depth dependent properties in tissue. First, we introduce the Monte Carlo lookup table (MCLUT) method for extracting optical properties from diffuse reflectance spectra. Next, we extend this method to a two-layer tissue geometry so that it can extract depth dependent properties in tissue. We then develop a computational model that relates photon sampling depth to optical properties and probe geometry. This model can be used to aid in design of application specific diffuse reflectance probes. In order to provide justification for using a two-layer model for extracting tissue properties, we show that the use of a one-layer model can lead to significant errors in the extracted optical properties. Lastly, we use our two-layer MCLUT model and a probe that was designed based on our sampling depth model to extract tissue properties from the skin of 80 subjects at 5 anatomical locations. The results agree with previously published values for skin properties and show that can diffuse reflectance spectroscopy can be used to measured depth dependent properties in tissue.Item Focusing light within turbid media with virtual aperture culling of the eigenmodes of a resonator(2012-12) Tom, William James; Dunn, Andrew Kenneth, 1970-; Downer, Michael; Emelianov, Stanislav; Milner, Thomas E; Rylander, Henry GVirtual aperture culling of the eigenmodes of a resonator (VACER) is a technique to focus light within turbid media at arbitrary locations. A seed pulse of light is directed through a phase-conjugate mirror (PCM) into a turbid medium. Though much of the light may be lost, any light which reaches the second PCM is phase conjugated and thus returned to the first PCM where the light will be phase conjugated again. Amplification by the PCMs can prevent decay of the light cycling between the PCMs. Introducing a mechanism which filters light based on position enables attenuation of the modes not traveling through the center of the virtual aperture resulting in a focusing of light at the center of the virtual aperture. The seed pulse and the positioning of the PCMs on opposite sides of the virtual aperture ensure that modes cannot bypass the virtual aperture. Magnetic fields and ultrasound waves are potential means for implementation of a virtual aperture. Generally, only weak filtration mechanisms like magnetic fields and ultrasound waves are innocuous to turbid media. Fortunately, weak effects can strongly cull modes in VACER because the filtration mechanism affects the modes during each pass between PCMs and the modes compete. A combination of theory and computational modeling prove that sound physical principles underlie VACER. Moreover, computational modeling reveals how mode overlap, the seed pulse, and other variables impact VACER performance. Good experimental performance is predicted.